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Abstract

Buckling loads of circular cylindrical laminated composite panels are obtained using SandersÐKoiter "e[g[
Sanders\ 0848^ Koiter\ 0848#\ Love "e[g[ Love\ 0816# and Donnell "e[g[ Loo\ 0846# shell theories with a _rst!
order\ shear!deformation approach and a RayleighÐRitz method that accounts for di}erent boundary
conditions and material anisotropy[ Results obtained using SandersÐKoiter\ Love\ Donnell shell theories
are compared with those obtained from _nite element simulations\ where the curved panels are modeled
using nine!node quadrilateral continuum!based shell elements that are independent of any shell theory[
Comparisons with _nite element results indicate that Donnell|s theory could be in error for some lamination
schemes and geometrical parameters[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Due to their high speci_c modulus and strength compared to metallic material\ _ber!reinforced
composite materials o}er potential for lighter weight and hence more e.cient structures for
application in various _elds of modern engineering[ One such _eld of modern engineering is
aerospace engineering where aerospace structures such as wings or fuselages are mostly assemblies
of shell structures[ Hence\ the analysis of composite shell structures has been of considerable
interest to researchers because of its increasing use in the aerospace industry[

Many shell theories developed for thin elastic isotropic circular cylindrical shells are based on
the Kirchho}ÐLove hypothesis[ Since _ber!reinforced composites have a low transverse shear
modulus compared to isotropic materials\ the Kirchho}ÐLove hypothesis of non!deformable
normals is not strictly applicable for laminated shell structures[ Hence\ shell theories accounting
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for transverse shear deformations were developed[ Incorporating transverse shear deformation
e}ects through the thickness results in a _rst!order\ shear!deformation "FSDT# theory[ Examples
of shell theories for circular cylindrical shell with FSDT are extensions of the SandersÐKoiter "e[g[
Sanders\ 0848^ Koiter\ 0848#^ Love "e[g[ Love\ 0816#\ and Donnell "e[g[ Loo\ 0846# shell theories[
Leissa "0862# provides an account and comparison of thirteen shell theories with proper assessment
of both strainÐdisplacement relations and stress resultants[ Recent bibliographies and review
papers have also appeared "e[g[ Knight and Starnes\ 0886^ Noor\ 0889^ Teng\ 0885#[

These theories involve the thinness assumption while still retaining the _rst!order\ shear!defor!
mation approximation through the shell thickness[ Donnell|s theory neglects the contribution of
the transverse shearing force intensity "Qy# to the equilibrium of forces in the circumferential
direction\ while the SandersÐKoiter and Love shell theories include it[ For this reason\ the Donnell|s
shell theory is often referred to as Donnell quasi!shallow shell equations "e[g[ Brush and Almroth\
0864#[ Love and Donnell shell theories do not include the contribution of transverse and axial
displacement in the twist terms[ In view of these di}erences\ it is important to establish the accuracy
of these shell theories for composite circular cylindrical shell or panels\ where the material could
be anisotropic[

Chandrashekara et al[ "0884# presents a list of references dealing with contributions made to the
linear static stress analysis of composite shell structures[ According to Chandrashekara et al[
"0884#\ shell theories with or without transverse shear have been used individually to examine the
static\ dynamic responses and buckling characteristics of laminated composite circular cylindrical
shell structures\ and very few researchers have actually studied composite shell structures using
di}erent shell theories[ Chandrashekara et al[ "0884# also provide a list of such references where
thermoelastic\ dynamic and static responses of bimodulus composite circular cylindrical shell were
studied using di}erent shell theories\ however these studies do not establish the accuracy of any
shell theory[

In order to establish the accuracy of any shell theory\ it is important to compare results obtained
from each shell theory with results from analyses that are independent of any shell theory[ Such a
study is found in Leissa "0862# and Chandrashekara et al[ "0884#[ Vibration frequency parameters
for isotropic circular cylindrical shell with di}erent length!to!radius and radius!to!thickness ratios
determined for various shell theories are presented in Leissa "0862#[ The frequency parameters
according to di}erent shell theories are compared with exact three!dimensional elasticity solutions\
and Leissa "0862# found that Donnell|s theory could be in error for some geometrical parameters[
Chandrashekara et al[ "0884# obtained the response of orthotropic circular cylindrical shells and
panels under static load using various shell theories\ and results are compared with three!dimensional
elasticity solutions[ Stresses and displacement were compared\ and it was found that Donnell|s theory
could be in error for some lamination schemes and geometrical parameters of the shell or panel[

The accuracy of shell theories for buckling was not assessed by Chandrashekara et al[ "0884#[
Buckling loads for a circular cylindrical shell obtained using di}erent shell theory are presented
by Simitses et al[ "0874# and Yi!Wei et al[ "0886#[ Buckling loads were obtained for orthotropic
cylinders with classical simply support boundary conditions using Donnell|s and Sanders theories
and were compared to each other by Simitses et al[ "0874#[ Yi!Wei et al[ "0886# presents axial
buckling loads for a circular cylindrical shell with laminate stacking sequence ð2u:2u:uŁs and
showed that di}erences exist in buckling loads between results obtained using Sanders| equations
and Donnell|s equation for some values of the _ber winding angle u[ These buckling loads were
not compared with results from an analysis which is independent of any shell theory[
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The main objective of the present paper is to assess the accuracy of SandersÐKoiter\ Love\ and
Donnell shell theories for buckling analysis using results obtained from _nite element analyses[
The STAGS _nite element code by Brogan et al[ "0883# is used where a curved panel is modeled
using nine!node quadrilateral continuum!based shell elements which is independent of any shell
theory[ Results using SandersÐKoiter\ Love\ and Donnell shell theories are obtained from a
RayleighÐRitz method where the Ritz functions consist of a circulation function "see Jaunky et
al[\ 0884a# and Legendre polynomials in order to impose di}erent boundary conditions and
account for material anisotropy[ These shell theories are commonly used because of their simplicity[
Buckling loads for laminated and isotropic circular cylindrical curved panels are obtained for
di}erent geometrical parameters[

1[ Analytical approach

The minimum total potential energy principle energy and a RayleighÐRitz solution procedure
based on Legendre polynomial function are used to develop a buckling analysis for circular
cylindrical panels[ SandersÐKoiter\ Love\ and Donnell shell theories are implemented through the
use of {tracer| coe.cients[ The analysis method is brie~y described in the following sub!sections[

1[0[ StrainÐdisplacement relations

The displacement _eld for a cylindrical shell\ according to a _rst!order\ shear!deformation
theory is given by

u"x\ y\ z# � u9"x\ y#¦zfx"x\ y#

v"x\ y\ z# � v9"x\ y#¦zfy"x\ y#

w"x\ y\ z# � w9"x\ y# "0#

where u9 is the membrane displacement in the x!direction\ v9 is the membrane displacement in the
y!direction\ w9 is the out!of!plane transverse displacement in the z!direction\ positive fx and fy

are the cross!sectional clockwise rotations around the y! and x!axes\ respectively[ The axial
coordinate is x\ the circumferential coordinate is y\ and the thickness coordinate normal to the
shell surface is z[

According to FSDT\ cross!sections normal to the reference plane before deformation are
assumed to remain planar but not necessarily normal to mid!surface after deformation[ A di}er!
ential element of a cylindrical shell segment with the coordinate axes\ notations and sign convention
is given in Fig[ 0[ The circumferential coordinate u is replaced by y � Ru\ where R is the radius of
the cylindrical shell segment[ Noting that 1y � R 1u\ the linear strainÐdisplacement relations "see
Bert and Birman\ 0877# can be written as^

oxL � o9
x¦zkx

oyL � o9
y¦zky

gxyL � g9
xy¦zkxy
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Fig[ 0[ Sign convention for cylindrical shell di}erential element[

gxzL � g9
xz

gyzL � g9
yz "1#

where the mid!plane strains o9
x \ o9

y \ 9
xy\ and the changes in curvature kx\ ky\ kxy and the transverse

shear strains g9
xz\ g9

xy are given by

o9
x �

1u9

1x

o9
y �

1v9

1y
¦

w9

R

g9
xy �

1u9

1y
¦

1v9

1x

kx �
1fx

1x

ky �
1fy

1y
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kxy �
1fx

1y
¦

1fy

1x
¦

C1

1R 0
1v9

1x
−

1u9

1y 1
g9

xz � fx¦
1w9

1x

g9
yz � fy¦

1w9

1y
−C0

v9

R
"2#

The subscript {L| denotes linear strain component[ Here C0 and C1 are {tracer| coe.cients used to
implement di}erent shell theories or strainÐdisplacement relations[ Accordingly when

, C0 � C1 � 0\ the _rst approximation of SandersÐKoiter shell theory "see Sanders\ 0848^ Koiter\
0848# is obtained[

, C0 � 0\ C1 � 9\ Love|s shell theory "see Love\ 0816# including transverse shear deformations is
obtained[

, C0 � 9 and C1 � 9\ Donnell|s shell theory "see Loo\ 0846# including transverse shear deformation
is obtained[

The nonlinear components of the strainÐdisplacement relations for a circular cylindrical shell or
panel "see Stein\ 0875#\ are

oxNL �
0
1
"v1

9\x¦w1
9\x#

oyNL �
0
1 $u1

9\y¦0w9\y−
v9

R1
1

%
gxyNL � −u9\y 0v9\y¦

w9

R 1−v9\xu9\x¦w9\x 0w9\y−
v9

R1 "3#

where a comma is used to indicate di}erentiation with respect to the next subscripted independent
variable[ For example v9\x denotes 1v9:1x[ The subscript {NL| denotes nonlinear strain component[
Equations "3# are obtained after neglecting higher!order terms for the cross!sectional rotations
since in the prebuckled state the cross!sectional rotations tend to zero\ the nonlinear terms in the
transverse shear strains\ and the z:R terms[

1[1[ Raylei`hÐRitz method

The physical domain "x\ y# of the curved panel mid!surface is transformed to a computational
domain "j\ h# using bilinear shape functions "see Jaunky et al[\ 0884a#\ and the displacements of
the panel are then expressed in terms of the natural coordinates "j\ h#[ As such\ the computational
domain is a square domain where j and h take on values of 20[ The components of the displacement
vector are three translations "D0\ D1\ D2 � u9\ v9\ w# and two bending rotations "D3\ D4 � fx\ fy#
when considering transverse shear deformation e}ects[ Each displacement component is approxi!
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mated independently by a di}erent Ritz function[ The approximation for the ith component of the
displacement vector is given by

Di"j\ h# � s
N

j�0

aijdij

� s
N

j�0

aijGi"j\ h# fj"j\ h# for i � 0\ 1\ 2\ 3\ 4 "4#

where dij represents the jth term in the N!term approximation for the ith displacement component\
aij are unknown coe.cients to be determined\ and Gi"j\ h# are the circulation functions[ The
circulation functions are used to impose di}erent boundary conditions along the edge of the panel[
Each term Gi is the product of four functions\ and each function is the equation of an edge of the
computational domain raised to an independent exponent for each displacement component[ Thus\
the circulation functions for a quadrilateral domain are

Gi"j\ h# �"0−h#pi"0−j#qi"0¦h#ri"0¦j#si "5#

The exponents\ pi\ qi\ ri\ and si can be used to imposed di}erent boundary conditions[ For example\
consider the edge "h � 0#\ the value of pi will determine the value of the displacement component
Di on edge "h � 0#[ Accordingly when

, pi � 9\ Di is free on edge "h � 0#[
, pi � 0\ Di is constraint on edge "h � 0#[

Hence the values of the exponents pi\ qi\ ri and si can be used to impose di}erent geometric boundary
conditions as discussed by Jaunky et al[ "0884a#[

The term fj in eqn "4# is a polynomial function in j and h\ and since Legendre polynomial "see
Andrews\ 0874# are herein considered\ the function term fj is de_ned as

fj � Pmj
"j#Pnj

"h#

mj\ nj �

F

G

j

J

G

f

"9\ 9#\"9\ 0#\"9\ 1#\ [ [ [ \"9\ N#

"0\ 9#\"0\ 0#\"0\ 1#\ [ [ [ \"0\ N#

*

"N\ 9#\"N\ 0#\"N\ 1#\ [ [ [ \"N\ N#

"6#

where Pmj
"q# denotes a Legendre polynomial of degree mj in variable q and is de_ned over the

interval\ −0 ¾ q ¾ 0[ Some properties of these polynomials can be exploited for computational
e.ciency in setting up the sti}ness matrices as discussed in the Appendix[ Legendre polynomials
are preferred over a simple polynomial function "e[g[ fj � jmjhnj# since Legendre polynomials are
orthogonal\ hence lead to better convergence characteristics\ and do not lead to ill!conditioning of
sti}ness matrices for large values of N "see Jaunky\ 0884#[ Figure 1 "taken from Jaunky\ 0884#
illustrates the convergence characteristic of Legendre polynomials compared to a simple poly!
nomial series "jmjhnj# for a simply supported isotropic 34>!skewed plate subjected to axial
compression[ The Ritz functions with Legendre polynomials gives results that converge faster than
the Ritz functions with a simple polynomial series[ The type of Ritz functions used also account
for anisotropic material properties as shown by Jaunky et al[ "0884a\ b#[
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Fig[ 1[ Convergence of buckling coe.cient with increasing order of polynomial for a simply supported isotropic 34>
skewed plate subjected to axial compression "from Jaunky\ 0884#[

1[2[ The minimum total potential ener`y principle

The critical stresses are determined on the basis of the principle that during buckling the elastic
strain energy stored in the structure is equal to the work done by the applied load "see Stein and
Ne}\ 0836^ Stein and Batdorf\ 0836#[ For a cylindrical composite panel\ the elastic strain energy
"U# is

U �
0
1 gA

"o#T &
Aij Bij 9

Bij Dij 9

9 9 Cpq
' "o# dA "7#

where

"o#T � "o9
x o9

y g9
xy kx ky kxy gxz gyz#T "8#

and is given by eqn "2#[ Aij\ Bij\ Dij\ and Cpq are the extensional\ coupling\ bending\ and transverse
shear sti}ness coe.cients\ respectively[

Considering a linear buckling analysis with a prescribed uniform in!plane prestress state\ the
work done "Wd# by the applied load can be written as

Wd � gA

"NÞxoxNL¦NÞyoyNL¦NÞxygxyNL# dA "09#

where the nonlinear strains oxNL\ oyNL\ and gxyNL are given by eqn "3# and NÞx\ NÞy\ and NÞxy are the
prescribed in!plane prestress state[ NÞx\ NÞy\ and NÞxy can be written as

NÞxy � lN0
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NÞxy � lN1

NÞxy � lN01 "00#

where l is a factor to be determined[ N0\ N1\ and N01 may be design or reference loads[
Hence at buckling

U � Wd "01#

The Ritz functions de_ned in eqn "4# can be substituted in eqn "01# to yield an expression of the
form

0
1

s
N

i�0

s
N

j�0

XT
i KijXj �

l

1
s
N

i�0

s
N

j�0

XT
i GijXj "02#

where Kij and Gij are the linear sti}ness matrix and geometric sti}ness matrix\ respectively[ Xi is
the column vector consisting of the unknown Ritz coe.cients aij of eqn "4# to be determined[ The
linear sti}ness and geometric sti}ness matrices are obtained by analytical integration as discussed
in the Appendix in order to exploit computational e.ciency o}ered by the Legendre polynomials[
Detailed derivation of the RayleighÐRitz formulation is given by Jaunky "0884#[ Minimizing eqn
"02# with respect to Xi leads to

s
N

i�0

s
N

j�0

"Kij−lGij#Xj � 9 "03#

which is an eigenvalue problem[ The eigenvalues and eigenvectors of the system of equation can
be found by using an eigenvalue solver "e[g[\ power iteration\ QR!iteration#[ In this case\ the
minimum eigenvalue is the critical load factor "lcr#\ the critical load is Ncr � lcr×"N0\ N1\ N01#\ and
the eigenvector Xj corresponding to the minimum eigenvalue is the buckling mode shape[ Note
that while these equations have a form similar to those for a _nite element analysis\ the vector of
unknown Xj represents a set of unknown coe.cients rather than nodal degrees of freedom[
Furthermore the symbol S means summation rather than assembly as in a _nite element approach[

2[ Numerical results

Numerical results are presented for anisotropic and isotropic circular cylindrical panels obtained
using the buckling analysis described herein[ These analytical results are compared with results
obtained from the _nite element code STAGS ðsee Brogan et al[ "0883#Ł[ The _nite element model
consists of a mesh of 29×29 nine!node quadrilateral continuum!based shell elements accounting
for transverse shear ~exibilities[ This nine!node quadrilateral continuum!based shell element is
known as the 379 Element in the STAGS _nite element code\ and its formulation is independent
of any shell theory[ Park and Stanley "0875# give the formulation of the element[ In the STAGS
_nite element analysis\ the prebuckling stress state is also prescribed as a uniform in!plane prestress
state[

The anisotropic panel has a laminate stacking sequence of ð2u:2u:uŁs with nominal mechanical
properties of E00 � 02[64 Msi\ E11 � 0[92 Msi\ G01 � G02 � G12 � 9[31 Msi and n01 � 9[14[ The
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Fig[ 2[ Geometry of curved panel with simply support boundary conditions "boundary conditions 0#[

Fig[ 3[ Geometry of curved panel with classical simply support boundary conditions "boundary conditions 1#[

isotropic material has nominal mechanical properties of E00 � 09[9 Msi and n01 � 9[29[ The
geometry of the curved panel is shown in Figs 2 and 3 where the angle subtended by the arc length
is p radians\ and the geometric boundary conditions are also shown[ The panel is considered to be
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Fig[ 4[ Comparisons of buckling loads for curved panel from di}erent theories for various winding angle u in ð2u:2u:uŁs
laminate[

simply supported since no bending rotations are constrained on its edges[ Two types of simply
supported boundary conditions are considered as shown in Figs 2 and 3[ The boundary conditions
shown in Fig[ 3 are the classical simply support boundary conditions which would be obtained by
using a Fourier series to approximate the displacement _eld[ Results are presented for curved
panels subjected to axial compression with di}erent values of the radius!to!thickness ratio "R:t#
and di}erent values of the length!to!radius ratio "L:R#[

2[0[ Bucklin` of anisotropic curved panel

The anisotropic curved panel is 59[9!in long with a radius of 5[9 in[ Each ply in the ð2u:2u:uŁs
laminate is 9[901!in thick[ This panel has geometric parameters\ R:t � 49 and L:R � 09[ Critical
buckling loads for this panel are computed using SandersÐKoiter\ Love\ and Donnell shell theories
and also using STAGS for _ber winding angle in the range 9>¾ u ¾ 89>[ The buckling loads were
obtained using Legendre polynomials up to the 02th!order "N � 02#[ For the case u � 89>\ Leg!
endre polynomials up to 19th!order "N � 19# were used[ These buckling loads were obtained for
boundary conditions 0 and 1 and are compared in Fig[ 4 for di}erent values of _ber winding
angle u[

Considering boundary conditions 0\ the results obtained using Love|s shell theory are very close
to that obtained using SandersÐKoiter shell theory[ The STAGS _nite element result are also in
good agreement with those obtained using Love|s and SandersÐKoiter shell theories[ The results
obtained using Donnell|s shell theory correlate well with those obtained by Love|s and SandersÐ
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Koiter shell theories for u between 9 and 09>[ For u × 09>\ Donnell|s shell theory overestimates
the buckling loads compared to either SandersÐKoiter or Love|s shell theory[ The di}erence in
buckling loads between those obtained by SandersÐKoiter and Donnell|s theories is largest for the
range of winding angle given by 49>¾ u ¾ 69>[ Above u � 69>\ the di}erence between the buckling
loads obtained by SandersÐKoiter and Donnell shell theories decreases\ and at u � 89> the loads
obtained using Donnell|s and SandersÐKoiter shell theories are again close to each other[ The
buckling loads for anisotropic curved panel obtained using boundary condition 1 has the same
trend in the di}erence between loads obtained using Donnell|s theory and SandersÐKoiter|s theory[

According to Brush and Almroth "0864#\ Donnell|s theory gives accurate results for cylindrical
panels that are relatively ~at before deformation and for complete cylindrical shells whose dis!
placement components in the deformed con_guration are rapidly varying functions of the cir!
cumferential coordinate[ Such shells are sometimes termed {quasi!shallow| shells[ The buckling
mode shapes for boundary condition 0 obtained from STAGS are shown with exaggerated dis!
placement amplitudes in Fig[ 5 for various values of u[ For u � 9 and 89>\ there are more than two
half!waves in the circumferential direction[ Hence\ the buckling loads obtained by Donnell|s theory
are in good agreement with the other results[ For u � 09>\ there are still more than two half!waves
on part of the panel and therefore\ the result from Donnell|s theory is still in agreement with the
other results[ For u � 19 and 29>\ only one half!wave in the circumferential direction is present\
and for u � 39\ 49\ 59 and 69>\ there are no half!waves in the circumferential direction[ Therefore\
for these values of u\ the results obtained by Donnell|s theory are not expected to be in good
agreement with the results predicted by the other shell theories[ For u � 79>\ the deformation
pattern is more in a skewed direction rather than along the circumferential direction\ therefore the
result obtained by Donnell|s theory is not in agreement with the results predicted by the other shell
theories[

These results indicate that Donnell|s theory could be in error depending on the degree of
orthotropy and anisotropy of the laminate ð2u:2u:uŁs[ Parameters for the membrane and ~exural
orthotropy and anisotropy are de_ned by Nemeth "0883# and given by

m �
A00A11−A1

01−1A01A55¦1A05A15

1ð"A00A55−A1
05#"A11A55−A1

15#Ł0:1

gm �
A00A15−A01A05

ð"A00A55−A1
05#2"A11A55−A1

15#Ł0:3

dm �
A11A05−A01A15

ð"A00A55−A1
05#"A11A55−A1

15#2Ł0:3

b �
"D01¦1D55#

"D00D11#0:1

gb �
D05

"D2
00D11#0:3

db �
D15

"D2
11D00#0:3

"04#
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Fig[ 5[ Buckling mode shape of curved panel for di}erent winding angle u in ð2u:2u:uŁs laminate[

where m\ gm\ and dm are the membrane orthotropy and anisotropy parameters\ respectively and b\
gb\ and db are the ~exural orthotropy and anisotropy parameters\ respectively[ Aij and Dij are the
membrane and bending sti}ness coe.cients "e[g[ Jones\ 0864#[ Table 0 gives the values of these
parameters and also the percentage di}erence between buckling loads obtained from SandersÐ
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Fig[ 5*continued[

Koiter and Donnell shell theories and from SandersÐKoiter|s shell theory and STAGS for boundary
condition 0[ The percentage di}erence in buckling loads between Donnell|s theory and SandersÐ
Koiter shell theory is

Ddon �"lsÐk−ldon#:ldon "05#
and the percentage di}erence in buckling loads between STAGS and SandersÐKoiter theory is
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Table 0
Membrane and ~exural parameters for orthotropy and anisotropy of the curved panel

u m gm dm b gb db D�don D�stags

"># ")# ")#

9 3[30 9[9 9[9 9[18 9[9 9[9 −0[6 2[5
09 1[02 −9[90 9[17 9[48 9[98 9[90 −0[3 9[2
19 9[35 −9[992 9[19 0[26 9[06 9[96 −5[6 1[7
29 −9[16 9[997 9[00 1[09 9[11 9[04 −8[8 1[2
39 −9[44 9[91 9[94 1[33 9[12 9[10 −03[6 9[5
49 −9[44 9[94 9[91 1[33 9[10 9[12 −13[3 1[3
59 −9[16 9[00 −9[997 1[09 9[04 9[11 −12[6 1[2
69 9[35 9[19 −9[992 0[26 9[96 9[06 −19[4 1[9
79 1[02 9[17 −9[90 9[48 9[90 9[98 −04[7 2[5
89 3[30 9[9 9[9 9[18 9[9 9[9 −1[0 5[4

� Ddon and Dstags for boundary conditions 0[

Dstags �"lsÐk−lstags#:lstags "06#

For u � 9 and 89>\ the anisotropy parameters are all zero[ For 09>¾ u ¾ 79>\ at least one of the
anisotropy parameters is non!zero[ These orthotropy and anisotropy parameters seem to a}ect
the buckling mode shape of this anisotropic panel with laminate stacking sequence ð2u:2u:uŁs
for the given R:t "R:t � 49# and L:R "L:R � 09# ratios[

2[1[ Bucklin` of curved panel with different R:t ratio

Buckling loads for curved panels with a ð269:269:69Łs laminate and with isotropic material
are obtained using SandersÐKoiter and Donnell shell theories for di}erent values of the R:t ratio[
This panel is 59[9!in long\ and the angle subtended by the arc length is p radians[ Results are
shown in Table 1 for the curved panel with boundary condition 0\ where the R:t ratio is varied
while keeping the radius constant "R � 5 in#[ In Table 2\ results for curved panel with boundary
condition 0 are presented where the R:t ratio is varied while keeping the thickness of the panel
constant "t � 9[13 in#[ Results from the present analysis were obtained with N � 04[

The buckling loads presented in Table 1 show about 19Ð14) di}erence in buckling load between
SandersÐKoiter and Donnell shell theories for R:t ratio up to 099 for the anisotropic laminate[
For R:t � 199\ there is a 5[6) di}erence\ and for R:t � 599 there is a 2[4) di}erence[ For the
isotropic panel\ a considerable di}erence of 19[93) is shown in buckling loads from SandersÐ
Koiter and Donnell shell theories for R:t � 14[ This di}erence is 09[98) for R:t � 49\ and the
di}erence is about 4) or less for R:t � 099 and 199[ For R:t � 599\ the di}erence between lsÐk

and ldon is less than 0)[ The results obtained using SandersÐKoiter are also in good agreement
with those obtained using STAGS _nite element code[

The buckling loads presented in Table 2 indicate that there is considerable di}erence in buckling
loads "about 19)# from SandersÐKoiter and Donnell theory only for R:t � 14 for both the
anisotropic and isotropic panels[ When R:t is 49\ the di}erence is 7[0 and 2[6) for the anisotropic
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Table 1
Buckling loads for curved panel for di}erent R:t ratio with R � 5[9 in and L:R � 09

t R:t lsÐk llove ldon lstags Ddon Dstags

"in# "lbs:in# "lbs:in# "lbs:in# "lbs:in# ")# ")#

ð269:269:69Łs laminate
9[13 14 01\999[9 01\099[9 05\999[9 00\468[9 −14[9 2[5
9[01 49 2305[0 2320[5 3178[8 2238[0 −19[2 1[9
9[95 099 819[1 810[7 0092[0 809[2 −08[8 0[0
9[92 199 150[6 150[7 179[6 159[2 −5[6 9[4
9[90 599 29[68 29[68 20[80 29[36 −2[4 0[9

Isotropic
9[13 14 31\330[1 31\639[1 42\979[4 30\834[3 −19[93 0[0
9[01 49 01\327[5 01\375[9 02\723[0 01\259[9 −09[98 9[5
9[95 099 2256[1 2262[6 2438[8 2247[7 −4[01 9[1
9[92 199 762[5 763[3 894[2 765[3 −2[55 −9[2
9[90 599 88[64 88[64 099[6 88[62 −9[83 9[91

Table 2
Buckling loads for curved panel for di}erent R:t ratio with t � 9[13 in and L � 59 in

R R:t L:R ls−k ldon lstags Ddon Dstags

"in# "lbs:in# "lbs:in# "lbs:in# ")# ")#

ð269:269:69Łs laminate
5[9 14 09[9 01\999[9 05\999[9 00\468[9 −14[9 2[5

01[9 49 4[9 7248[6 8094[8 7057[1 −7[09 1[2
13[9 099 1[4 3574[7 3709[1 3474[1 −1[59 1[1
37[9 199 0[14 1364[7 1364[8 1238[6 −9[992 4[2

033[9 599 9[306 663[1 663[1 646[3 −9[9 1[1

Isotropic
5[9 14 09[9 31\330[1 42\979[4 30\834[3 −19[93 0[0

01[9 49 4[9 16\083[6 17\148[1 16\919[9 −2[6 9[5
13[9 099 1[4 03\225[9 03\267[3 03\193[3 −0[7 9[8
37[9 199 0[14 6132[2 6132[2 6111[02 −9[9 9[2

033[9 599 9[306 1310[0 1310[0 1313[1 −9[9 −9[0
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and isotropic panel\ respectively[ For the other R:t ratios\ the di}erence in buckling loads is less
than 2) with the di}erence being zero or very close to zero for R:t � 199 and 599[ Results
obtained using SandersÐKoiter theory are also in good agreement with those obtained using
STAGS[

Thus\ the curved panel shows di}erent responses to Donnell shell theory for the same R:t ratio\
but depends on the value of the radius R[ The 0:R terms in eqn "2# determine the in~uence of the
coupling between the out!of!plane and in!plane displacements in the shell buckling[ As the radius
R increases\ the coupling decreases and hence the results from Donnell|s theory tend to agree with
SandersÐKoiter|s theory[ Isotropy seems to in~uence Donnell|s theory\ since the di}erence in
buckling loads from SandersÐKoiter and Donnell|s shell theories for the isotropic panel are less
than those of the anisotropic panel for the cases considered[

The contour plots of the mode shape of the radial displacement "w9# obtained from the buckling
analysis using SandersÐKoiter theory for the anisotropic panel for di}erent R:t ratios with R � 5[9
in are shown in Fig[ 6[ The curved panel is shown in a planform view in Fig[ 6[ Only the mode
shape for R:t � 599 has more than two half!waves in the curved direction\ hence\ the results of
Donnell|s theory and SandersÐKoiter are close to each other as expected[

2[2[ Bucklin` of curved panel with different L:R ratio

Buckling loads for curved panels with laminate ð269:269:69Łs and isotropic material are
obtained using SandersÐKoiter and Donnell shell theories for di}erent R:t ratio\ with R � 5[9 in[
The panel has the same arc length and boundary conditions as the one described in Fig[ 2[ Results
are shown in Table 3 and 4[ In Table 3\ the R:t ratio is 599 "t � 9[90#\ and in Table 4\ the R:t ratio
is 14 "t � 9[13#[ The L:R ratio is varied while keeping the radius R constant at 5[9 in[ Results from
the present analysis were obtained with N � 04[

The buckling loads presented in Table 3 for the anisotropic panel show di}erences in results
from SandersÐKoiter and Donnell shell theories between 2[4 and 4[6) for L:R ratios between 04
and 7[ For L:R � 2 and 4\ the di}erence in buckling loads is about 1)\ and for L:R � 0\ the
di}erence is zero[ The di}erence in buckling loads from SandersÐKoiter and Donnell shell theories
for the isotropic panel is 0[7) or less for all the L:R ratios considered[ The di}erence decreases as
the L:R ratio decreases[ At L:R � 0\ the di}erence is zero[ The results obtained using SandersÐ
Koiter shell theory are in good agreement with those obtained using the STAGS _nite element
code[

The buckling loads presented in Table 4 for the anisotropic\ show large di}erence in buckling
loads from SandersÐKoiter and Donnell shell theories for L:R ratio up to _ve[ The di}erence in
buckling loads is 6[5) for L:R � 2 and is negligible for L:R � 0[ For the isotropic panel\ the
di}erence in buckling loads from the SandersÐKoiter and Donnell shell theories is large up to
L:R � 7[ For L:R � 2 and 4\ the di}erence in buckling loads from the SandersÐKoiter and Donnell
shell theories is 5[1 and 2[7)\ respectively\ for the isotropic panel[ The di}erence in buckling loads
is 0[0) for L:R � 0[

The di}erence in buckling loads from the SandersÐKoiter and Donnell shell theories is less for
the isotropic panel than for the anisotropic panel[ Anisotropy seems to a}ect the result obtained
from Donnell|s shell theory for panels with very large R:t and L:R ratios[ For thick panels
"R:t � 14#\ the di}erence in buckling loads is large for isotropic and anisotropic panels with large
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Fig[ 6[ Buckling mode shapes for ð269:269:69Łs laminate with di}erent R:t ratios with R � 5[9 in[



N[ Jaunky\ N[F[ Kni`ht : International Journal of Solids and Structures 25 "0888# 2688Ð27192705

Table 3
Buckling loads for curved panel with di}erent L:R ratio for t � 9[90 in\ R � 5[9 in "R:t � 599#

Length\ "L# L:R lsÐk ldon lstags Ddon Dstags

"in# "lbs:in# "lbs:in# "lbs:in# ")# ")#

ð269:269:69Łs laminate
89[9 04 18[57 20[20 18[53 −4[1 9[0
59[9 09 29[68 20[80 29[36 −2[4 0[9
39[9 7 29[93 21[83 29[80 −4[6 −1[7
29[9 4 21[20 21[84 20[04 −0[8 2[6
07[9 2 26[70 27[48 26[39 −1[9 0[0
5[9 0 24[97 24[97 21[53 −9[9 2[6

Isotropic
89[9 04 88[16 090[02 87[45 −0[7 9[6
59[9 09 88[64 099[65 88[82 −0[9 −9[1
39[9 7 099[83 091[28 099[61 −0[3 9[1
29[9 4 090[59 092[94 090[92 −0[3 9[4
07[9 2 091[02 092[34 090[70 −0[2 9[2
5[9 0 090[40 090[40 090[06 −9[9 9[2

Table 4
Buckling loads for curved panel with di}erent L:R ratio\ for t � 9[13 in and R � 5[9 in "R:t � 14#

Length "L# L:R lsÐk ldon lstags Ddon Dstags

"in# "lbs:in# "lbs:in# "lbs:in# ")# ")#

ð269:269:69Łs laminate
89[9 04 09\296[8 02\546[2 8892[7 −13[4 3[9
59[9 09 01\999[9 05\999[9 00\468[9 −13[2 2[5
39[9 7 02\514[0 06\292[7 02\905[3 −10[1 3[5
29[9 4 03\329[4 06\643[3 02\631[9 −07[6 4[9
07[9 2 06\173[3 07\698[7 06\103[2 −6[59 9[3
5[9 0 06\219[9 06\229[3 06\021[5 −9[95 0[0

Isotropic
89[9 04 27\769[0 38\428[3 27\391[7 −10[4 0[1
59[9 09 31\330[7 42\979[5 30\834[3 −19[3 0[0
39[9 7 37\850[7 43\242[9 37\096[2 −8[8 0[7
29[9 4 40\327[6 43\706[1 49\434[5 −5[1 0[6
07[9 2 42\224[0 44\332[3 41\812[3 −2[7 9[6
5[9 0 44\151[9 44\822[0 43\182[1 −0[0 0[6
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L:R ratio[ For both thin "R:t � 599# and thick "R:t � 14# panels\ Donnell|s theory gives good
agreement for isotropic and anisotropic panels with small value of L:R ratio[

3[ Concluding remarks

The accuracy of SandersÐKoiter\ Love and Donnell shell theories for buckling of anisotropic
and isotropic curved panel has been assessed[ Buckling loads using these shell theories were
obtained by using a RayleighÐRitz method\ where the Ritz functions consist of circulation functions
and Legendre polynomials[ Comparisons of buckling loads with _nite elements results indicate
that SandersÐKoiter theory is in good agreement with _nite element results and that Love|s shell
theory is in good agreement with SandersÐKoiter shell theory[ Donnell|s theory could be in error
compared to SandersÐKoiter theory depending on the degree of anisotropy of material and
geometrical parameters of the curved panel such as the R:t and L:R ratios[

Results show that di}erences between buckling loads obtained using the SandersÐKoiter and
Donnell shell theories is large for curved panels with small R:t ratios "R:t ¾ 099# where the radius
"R# is small[ For the same small R:t ratios with large value of radius "R#\ the di}erence between
buckling loads obtained using SandersÐKoiter and Donnell shell theories is much less than those
with the corresponding small R:t ratio with small value of radius[ For curved panels with small
values of "R:t# ratios and large value of L:R ratios\ a large di}erence in buckling loads is obtained
using SanderÐKoiter and Donnell theories[ This di}erence is small or negligible for curved panels
with small R:t and L:R ratios[

In general\ a small or negligible di}erence is noted in buckling loads obtained using the SandersÐ
Koiter and Donnell shell theories for curved panels with large R:t ratios[ For such panels\ only
anisotropic material properties seem to a}ect the di}erence in buckling loads obtained using the
SandersÐKoiter and Donnell shell theories when the L:R ratio is large[ As such for most of the
cases considered\ the di}erence in buckling loads obtained using the SandersÐKoiter and Donnell
shell theories is larger than that for the corresponding case with anisotropic material properties[
Since Love|s shell theory is in good agreement with SandersÐKoiter shell theory\ it is concluded
that neglecting the transverse shearing force "Qy# in the equilibrium of forces in the circumferential
direction is mostly responsible for the inaccuracy of Donnell|s theory as Love|s theory does not
include the contribution of the axial and transverse displacement in the twist terms[
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Appendix

The types of integrals encountered in the evaluation of the linear and geometric sti}ness matrices
are
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g
¦0

−0

RiRj dj dh "07#

g
¦0

−0

Ri\jRj dj dh "08#

g
¦0

−0

Ri\hRj dj dh "19#

g
¦0

−0

Ri\jRj\j dj dh "10#

g
¦0

−0

Ri\jRj\h dj dh "11#

g
¦0

−0

Ri\hRj\h dj dh "12#

where Ri and Rj can be any of the approximations for u9\ v9\ w9\ fx\ fy\ which are the Ritz functions
corresponding to the degrees of freedom of the displacement _eld for a curved panel in a RayleighÐ
Ritz formulation[ These integrals correspond to integration over the computational domain[ Only
the integration scheme for the integral of equation "10# will be discussed herein\ since the others
are similar[

The integral of eqn "10# can be written as

g
0

−0

Ri\jRj\j dj dh � 0g
0

−0

f"j# dj1 0g
0

−0

`"h# dh1� IjIh

where

Ij � g
0

−0

ð"0−j#pl"0¦j#rlPmi
"j#Ł\j ð"0−j#pt"0¦j#rtPmj

"j#Ł\j dj

Ih � g
0

−0

"0−h#ql"0¦h#slPni
"h#"0−h#qt"0¦h#stPnj

"h# dh "13#

since the exponent of the terms "02j# and "02h# can be either zero or one\ eqn "13# can be written
as

g
0

−0

ð"cjlj
1¦djlj¦ejl#Pmi

"j#Ł\j ð"cjtj
1¦djtj¦ejt#Pmj

"j#Ł\j dj

×g
0

−0

"chlh
1¦dhlh¦ehl#Pni

"h#"chth
1¦dhth¦eht#Pnj

"h# dh � IpjIph "14#
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where the coe.cients chl\ dhl\ ehl\ cht\ dht\ eht\ cjl\ djl\ ejl\ cjt\ djt\ and ejt\ depend on the exponents of
the terms "02j# and "02h#[ After expansion\ Ipj can be written as

Ipj � g
0

−0

ð"ajlj¦bjl#Pmi
"j#¦"cjlj

1¦djlj¦ejl#P?mi
"j#Ł

×ð"ajtj¦bjt#Pmj
"j#¦"cjtj

1¦djtj¦ejt#P?mj
"j#Ł dj "15#

Next the properties of Legendre polynomials "see Andrews\ 0874# are used to write eqns "14#
and "15# in a form more appropriate for analytical integration[ The properties of Legendre
polynomial "Pn"n# � Pn# are

P−n � P"=n=−0# "16#

nP?n � nPn¦P?n−0 "17#

nPn �
"n¦0#
"1n¦0#

Pn¦0¦
n

"1n¦0#
Pn−0 "18#

n1P?n �
n"n¦0#
"1n¦0#

Pn¦0¦
n1

"1n¦0#
Pn−0¦"n−0#Pn−0¦P?n−1 "29#

n1Pn �
"n¦0#
"1n¦0# 6

"n¦1#
"1n¦2#

Pn¦1¦
"n¦0#
"1n¦2#

Pn7 "20#

¦
n

"1n¦0# 6
n

"1n−0#
Pn¦

"n−0#
"1n−0#

Pn−17 "21#

Pn �
P?n¦0−P?n−0

"1n¦0#
"22#

Two other useful properties are

g
0

−0

PnPm dn � 8
9 for n � m

1
1n¦0

for n � m
"23#

g
0

−0

P?nP?m dn � 6
9 for "n¦m# odd

n"n¦0# for "n¦m# even7 n ¾ m "24#

Hence\ eqns "16#Ð"22# can be used to write Ipj from eqn "15# as

Ipj � g
0

−0

s
4

h�0

s
4

s�0

aidhajdhP?maidk
P?majfk

dj "25#

and eqn "24# is used to evaluate each integral in this summation[ Equation "16# is used when
Legendre polynomials with negative indices occur[ Iph from eqn "14# can be written as
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Iph � g
0

−0

s
4

h�0

s
4

s�0

aihajhPmaik
Pmajk

dh "26#

and eqn "23# is used to evaluate each integral in the above summation[ Finally\ Iph×Ipj evaluates
integral of the type of eqn "10#[
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